	[image: image1.jpg]AR\

New Horizons

Learning Centres

	COURSE OUTLINE

IT TRAINING

[image: image1.jpg]

	
	10266 - Programming in C# with Microsoft Visual Studio 2010

	Duration: 5 days
	

	
	Overview:
The course focuses on C# program structure, language syntax, and implementation details with .NET Framework 4.0. This course describes the new enhancements in the C# 4.0 language by using Visual Studio 2010. In this course, lower-intermediate level programmers gain the knowledge and skills they need to develop C# applications for the Microsoft .NET Framework 4.0. The course highlights the structure of C# 4.0 programs, language syntax, and implementation details. This course is not mapped to any exam.

Target Audience:

This course is intended for experienced developers who already have programming experience in C, C++, Visual Basic, or Java and understand the concepts of object-oriented programming. This course is not designed for new programmers; it is targeted at professional developers with at least 12 months experience of programming in an object-oriented environment.

Pre-requisites:

Before attending this course, students must have:

· At least 12 months experience working with an Object Oriented language

· Have C++ or Java knowledge:

· Creating Classes

· Inheritance and Abstraction

· Polymorphism

· Interfaces

· Exceptions

· Knowledge of the Visual Studio IDE.

At Course Completion:

After completing this course, students will be able to:

· Explain the purpose of the .NET Framework, and understand how to use C# and Visual Studio 2010 to build .NET Framework applications.

· Understand the syntax of basic C# programming constructs.

· Create and call methods in a C# application.

· Catch, handle and throw exceptions.

· Perform basic file IO operations in a C# application.

· Create and use new types (enumerations, classes, and structures), and understand the differences between reference types and value types.

· Control the visibility and lifetime of members in a type.

· Use inheritance to create new reference types.

· Manage the lifetime of objects and control the use of resources.

· Define properties and indexers to encapsulate data, and define operators for this data.

· Decouple an operation from the method that implements an operation, and use these decoupled operations to handle asynchronous events.

· Use collections to aggregate data, and use Generics to implement type-safe collection classes, structures, interfaces, and methods.

· Implement custom collection classes that support enumeration.

· Query in-memory data by using LINQ.

· Integrate code written by using a dynamic language such as Ruby and Python, or technologies such as COM, into a C# application

CODE:0-0-MSM10266-ILT
	
	Module 1: Introducing C# and the .NET Framework

Lessons

· Introduction to the .NET Framework

· Creating Projects Within Visual Studio 2010

· Writing a C# Application

· Building a Graphical Application

· Documenting an Application

· Running and Debugging Applications by Using Visual Studio 2010

Lab : Introducing C# and the .NET Framework

· Building a Simple Console Application

· Building a WPF Application

· Verifying the Application

· Generating Documentation for an Application

Module 2: Using C# Programming Constructs

Lessons

· Declaring Variables and Assigning Values

· Using Expressions and Operators

· Creating and Using Arrays

· Using Decision Statements

· Using Iteration Statements

Lab : Using C# Programming Constructs

· Calculating Square Roots with Improved Accuracy

· Converting Integer Numeric Data to Binary

· Multiplying Matrices

Module 3: Declaring and Calling Methods

Lessons

· Defining and Invoking Methods

· Specifying Optional Parameters and Output Parameters

Lab : Declaring and Calling Methods

· Calculating the Greatest Common Divisor of Two Integers by Using Euclid's Algorithm

· Calculating the GCD of Three, Four, or Five Integers

· Comparing the Efficiency of Two Algorithms

· Displaying Results Graphically

· Solving Simultaneous Equations (optional)

Module 4: Handling Exceptions

Lessons

· Handling Exceptions

· Raising Exceptions

Lab : Handling Exceptions

· Making a Method Fail-Safe

· Detecting an Exceptional Condition

· Checking for Numeric Overflow

Module 10: Encapsulating Data and Defining Overloaded Operators

Lessons

· Creating and Using Properties

· Creating and Using Indexers

· Overloading Operators

Lab : Creating and Using Properties

· Defining Properties in an Interface

· Implementing Properties in a Class

· Using Properties Exposed By a Class

Lab : Creating and Using Indexers

· Implementing an Indexer to Access Bits in a Control Register

· Using an Indexer Exposed by a Class

Lab : Overloading Operators

· Defining the Matrix and MatrixNotCompatible Types

· Implementing Operators for the Matrix Type

· Testing the Operators for the Matrix Type

Module 11: Decoupling Methods and Handling Events

Lessons

· Declaring and Using Delegates

· Using Lambda Expressions

· Handling Events

Lab : Decoupling Methods and Handling Events

· Raising and Handling Events

· Using Lambda Expressions to Specify Code

Module 12: Using Collections and Building Generic Types

Lessons

· Using Collections

· Creating and Using Generic Types

· Defining Generic Interfaces and Understanding Variance

· Using Generic Methods and Delegates

Lab : Using Collections

· Optimizing a Method by Caching Data

Lab : Building Generic Types

· Defining a Generic Interface

· Implementing a Generic Interface

· Implementing a Test Harness for the BinaryTree Project

· Implementing a Generic Method

	
	Module 5: Reading and Writing Files

Lessons

· Accessing the File System

· Reading and Writing Files by Using Streams

Lab : Reading and Writing Files

· Building a Simple Editor

· Making the Editor XML Aware

Module 6: Creating New Types

Lessons

· Creating and Using Enumerations

· Creating and Using Classes

· Creating and Using Structs

· Comparing References to Values

Lab : Creating New Types

· Using Enumerations to Specify Domains

· Using a Struct to Model a Simple Type

· Using a Class to Model a More Complex Type

· Using a Nullable Struct

Module 7: Encapsulating Data and Methods

Lessons

· Controlling Visibility of Type Members

· Sharing Methods and Data

Lab : Encapsulating Data and Methods

· Hiding Data Members

· Using Static Members to Share Data

· Implementing an Extension Method

Module 8: Inheriting From Classes and Implementing Interfaces

Lessons

· Using Inheritance to Define New Reference Types

· Defining and Implementing Interfaces

· Defining Abstract Classes

Lab : Inheriting From Classes and Implementing Interfaces

· Defining an Interface

· Implementing an Interface

· Creating an Abstract Class

Module 9: Managing the Lifetime of Objects and Controlling Resources

Lessons

· Introduction to Garbage Collection

· Managing Resources

Lab : Managing the Lifetime of Objects and Controlling Resources

· Implementing the IDisposable Interface

· Managing Resources Used By an Object

Module 13: Building and Enumerating Custom Collection Classes

Lessons

· Implementing a Custom Collection Class

· Adding an Enumerator to a Custom Collection Class

Lab : Building and Enumerating Custom Collection Classes

· Implementing the IList TItem Interface

· Implementing an Enumerator by Writing Code

· Implementing an Enumerator by Using an Iterator

Module 14: Using LINQ to Query Data

Lessons

· Using the LINQ Extension Methods and Query Operators

· Building Dynamic LINQ Queries and Expressions

Lab : Using LINQ to Query Data

· Using the LINQ Query Operators

· Building Dynamic LINQ Queries

Module 15: Integrating Visual C# Code with Dynamic Languages and COM Components

Lessons

· Integrating C# Code with Ruby and Python

· Accessing COM Components from C#

Lab : Integrating C# Code with Dynamic Languages and COM Components

· Integrating Code Written by Using a Dynamic Language into a C# Application

· Using a COM Component from Visual C# Application

New Horizons Learning Centres, Australia
 1300 794 006  info@nhaustralia.com.au  www.nhaustralia.com.au

